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We consider one possible interpretation of the conditions which determine
the optimum regenerating signal in a linear observable system.

1. In the theory of optimal processes two problems, among others, play an
essentlal role.

1. The problem of control, that is, the problem of the choice of forces
which carry a controlled object from one glven state into another.

2. The problem of observation, that is, the prcblem of the operation
which determines the unknown present (time varying) coordinates of the cbject
in terms of sllowed observable quantities.

These problems have been examined, in particular, within the bounds of
the theory of optimum processes based on the maximum principle of Pontriagin
[1], and from the standpoint of the theory of dynamic programing of Bellman
[2]. The problems of the observation and control of linear systems under
the condition of the minimum of a quadratic quality criterion were studied
by Kalman [ 3], whereby a duality between the problems of control and obser-
vatlion were established. A number of papers have been devoted to applied
problems of control and observation. See, for example, [4]).

One of the possible approaches to the linear problems 1 and 2 18 assocl-
ated with the theory of the L-problem of moments ([5]. Such an approach to
the problem of control was suggested in [6]. The idea of this method is to
interpret the problems of the computation of control forces or computation
of regenerating slgnals as problems of the construction of linear function-
als which take on given values on certaln known elements., In this process
the problem must be transformed in such a way that the bounds or the esti-
mates to be minimized, can be expressed in terms of norms of the unknown
functional. The goal of the present paper is to interpret, in the sense of
the problem of observation and from the standpoint of the duality principle,
those relationships which determine the optimum solution of problems 1 and
2 by an approach to these problems that uses the method of the L-problem of
moments .
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2. We examlne the linear dynamic system

dx
dt =A{t)z+B({t)u 2.1)

where x 18 the n-dimensional state vector of the coordinates of the control-
led object; u is the r-dimensional vector of the control forces; 4(z), B(:)
are continuous or plecewilse-continuous matrix functions of the éorresponding
dimensions; and ¢ is time.

Note 2.1. In Eqation (2.1) the coordinates u,,..., u,. of the vector
u are elther force quantities actually applied to the object br u, are quan-~

titles assoclated with the applied control forces and introduced into Zqua-
tior. (2.1) in a form convenient for the investigation of the problem.

We examine first the problem of control.

Problem 2.1. We have given an initlal state {t°, z°} of the object
end a manifold # of its finite states {t’, 2'}, described by the parametric
equations

z = f [z, t =1+ 10 [2] (2.2)

where 2z is a x-dimensional vector of the parameters limited, say, by certain
condition whilch we write symbolically as

=Y/ (2.3)
In addition there may be given supplementary limits and constraints.

The problem consists of determining the values of z° and of the function
u(t)(t° < t < t°+ G)which satisfy the given limits and which are such that
for u = u(t) there exists a motlon x(t) of the system (2.1) satisfying
equations

z (%) = z°, z (') = f [2°], ¢ =t + 9 [2°] (2.4)

For completeness, we describe the approach to the solutlon of the problem

2.1. The solution x(t)of Equation (2.1) we write in the form
t

z() =X, t12°+ | X [, 21X [, 7] B (1) u(v) do (2.5)
1
where X 1s the fundamental matrix of the solutions of Equation (2.1) for u = 0.
we set £ (£) = f [z] ana ¢t = ¢° + & (2] into (2.5) and transform
the obtalned equation lnto the form

8[z]
§ G [z, t°, Tl v(z, t° 1) d:L (2, t° ©) = c (2) (2.6)
or,in terms of cié;dinates,
{S Glz, £, 7] vz £° 7] det (2, &, 1:)}{ = ¢i(2) (2.7)

so that the left %1de of (2.7) can be interpreted as the values of a certain
linear functional g (generated by Functions v and () on the known elements
g“)(z,t°, T) (0 LTS ﬁ), determined by the matrix ¢, and so that the given
conditions can be expressed in the form of the bound
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lel* <t (2.8)

on the norm |lpl|* of the functional . Here the quantities v (z, t°, 1) and
d.{ (z, t° T)coincide with the gquantities u{r) and 47 , respectively, or are
assoclated with them by a certain transformation which is introduced for the
purpose of interpreting the given bound 1n the form of (2.8). The problem
2.1 has been reduced to the construction of a functional ¢ [t° g (T}], which
satisfies conditions (2.8)

o [1°, 2@ {z. . 1] = ¢: (2
b 4 Y LR -1 L St } 3 F* T\

e

£ia=4 nl {20\
E=1,..., a) (2.9}

We shall denote the scalar product of the vectors ¢ and 1 by the symbol
g*1. For the fixed z the problem (2.9) has the solution@ [, g (T)]if, and
only if, [5]

Mﬁ):mmméhquﬁMm>oqum=i (2.10)
=

where ||g(7)|] 1s the norm 1in the functional space{g (7)} (0 < ¥ < ¥)on which
the functional ¢ 1is defined and which contains, in particular,the p‘“elements.
In this case the minimum norm |ju°||* of the functional g, satisfying the con-
ditions (2.9), 1is determined by Equation

° 1
lo°I* =<7 (2.41)
and the functional ¢° itself satisfles the condition
9° [1°, g°] = maxy{p [° g°) =1 for ot =0"! (2.12)

Here g° = X 1;°g"W 15 the solution of the problem (2.10). Hence the
problem 2.1 under the bound (2.8) is soluble if, and only if,

a(t’) = max,a (% 2) > 1 for z&Z (2.13)

sup; o (¢°, z) > 1 for z2Z (2.14)
if the upper side a (£° 2) is not attained for 2z & Z,

or

Note 2.2. In considering the problems (2.8) and {2.9)we have refer-
red to [5]. In [5] it was assumed that the elements gll) , . . g™ are iine-
arely independent. Here the linear independence of gli)fis not assumed. How-
ever this does not prevent from the use of the results of [(5]). Indeed, we
shall verify, for example, the sufficlency of conditions (2.10). Let the
condition (2.10) be satisfied. We assume for definiteness that the elements
g9, ..., g™are linearly independent and that

m
g = pg? (=m+1,...,n (2.15)
=1
The condition (2.10) clearly may be satisfied only under the condition
m
eg=NBye; (i=m+1,..,n (2.16)
Juel

whereby the following equallity is valid

n n m m
min (|3} 46, 3 1oy =1) =min (| 3 47|, 3 4e;=1) @
i=1 i=1 =1

=1
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From (2.15) and (2.16) it follows that it is sufficlent to satisfy the
the conditions (2.9) only for j=1,..., m,since for i >> mthese conditions
are automatically satisfied. Under conditions (2.10), the conditions (2.9)
for { == 1,...,17 Pay be satisfied in accordance with the results of [5] since
the elements 1,. ..y are linearly independent. The assertion on the
sufficlency of conditions (2.10) for the solvability of the problem (2.9)
without an assumption on the independence of ,gU) has been proved, and fur-
ther, as a consequence (2.17), Equation (2,11) has also been proved. In an
analogous way the necessity of conditions (2.10) can be verified. We remark
that the theorem on the solvabillty of the r-problem cited in [11] on page
100 is not accompanlied by reservations on the linear independence of the g“)
elements

The present note was the result of discussion with N.E. Kirin, whom the
author would like to thank.

2.3. The scheme of reducing the problem 2.1 to the L-problem of moments
remains in force wi‘hout essential changes in the case when not only the
finite values x(t’) are constrained by the conditions laid down on the
manifold ¥, but also when the values x(¢,) at an arbitrary other instant of
time are so constralned. In this case the manifold ¥ is determined by the
system of Equations

z=fll]z], H=¢+B8I[z] (=1,..,9

and likewise the equation Z (£j) = fUil [2] must be fulfilled.

2.4, In the compariscn of the problem 2.1 with the problem of observa-
tion we shall assume, for reasons of simplifying the calculations, that in
(2.1) u(¢) 1s a scalar quantity, B(¢) = »(t) is a n-vector, and we shall
1imit ourselves in the f-problem to the simplest functional spaces, that 1s,
in equations (2.7) we shall assume that

v(2, 8% 1) =u(1),d (21, 1) =drorv=1,u () dv = d: ().
Then the elements g(i) and the quantity ¢y in (2.7) and (2.9) have the form

g (2, 1°, 1) = 2 0 ; (1 t° + ) 2" (% 1° + 1) b (©° + 7) (2.18)

=1 k=1
n

o
e (2) = filzl = D) i (8°, t° + ©) x; (2.19)
=1
where x,, and xi;lare the corresponding elements in the matrices X and X
2.5. The maximum (2.13) is attained on Z when the functions 4 (y) and
9 [z]are continuous and Z is a bounded closed set. The validity of this
assertlon follows from the lnequality

lim sup o (to, z) <a (t°, zo) for ¢ (z) = ¢(z0), v[z] = v [20]

which the function a(¢°,z) satisfies.

3., We consider the problem on observatlon. We are given the system
dr/dt = Q1) z (3.1)
Yy = H(@)«zx (3.2)
where , 1s a n-dimensional vector of the state coordinates of the object;
vy 1s a m-dimensional vector of the observed coordinates; o(¢), #(¢) are
contlnuous or plecewlse-continuous matrix-functions, and Equations (3.2) do



Controllability and observability of dynamic systems 5

not have a single-valued solution with respect to the vector gz,

Problem 3.1. We have given the number ¢ >> 0 and the manifold ¥
of quantities y[x, 2] from which it is required to choose the quantity
’]’(t-{-'ﬁ), subject to determination by observation of the vector y(¢ + 1)
on the time interval 0 {1 < 0.

Let the manifold ¥ be lescrlbed parametrically by Eguation
vlz,zl =p(2)-z (3.3)

where z 18 a kx-dimensional vector constralned, say, by some condition (2.3).

The problem consists of determining a linear functional @ [t, Yy (t’)],whi_ch
1s defined onm-dimensional vector-functions ¥ (%) (0 < v < ¥)and which for
every value of time [ & T under consideration satisfies the condition

eltyt+ N =p(2-z(t+9) (3.9)
where x( ¢ ) 1s the motion of the system (3.1), z & Z and the vector y(t)
is determined by Equation (3.2). Additional conditions may be given.
Note 3.1. The function y(t4 7) (0 < v 9) which is observed may be

associated with the motion x(t % 1) by & more complicated linear relation
than (3.2.). Por example one may give the relation
i

ye+9=Y@t+9v0+{clant+taeena (35)
0
which comes from a differential association dy/dt=D () y <+ C (t) z. The

arguments which are adduced below may be easily extended to cases similar
to (3.5).

If the glven conditions are reduced to the restriction (2.8).of the norm
of the functional v (3.4), or to the requirement [jp||* = min for each t &= T,
or to the requirement sup; (| @ |*) = min for some norm |lol|*, then the prob-
lem 3.1 reduces to the L-problem. In fact, the solution x(t)of Equation
(3.1) satisfies the equality z (£ + 1) = F (¢, t + T) z (7), where F (2°, ¢)
is the fundamental matrix of the solutions of the system (3.1). Therefore
Equation (3.4) reduces to the equation

QI HEG+ D F(t,t+1 Flg, t+ a4+ 0 =p()z(+9) (3.6
Taking into account the linear character of the functional ¢ and compa-

ring coefficients for z; (£ + ©) on the left and right sides of (3.6), we
obtain, as above, the system of Equations (2.9), where t° = ¢ and

a6 (z2)=pi ) (i=4,...,n) (3.7
whereas the elements g(¥) (z, f, T) are expressed in a known way by ¥, F and F%
Hence problem (3.4) for fixed z and ¢ 1s solvable if, and only if, condition
(2.10) is fulfilled (for ¢ (z) = p (2)). Necessary and sufficient conditions
for the solvability of problem 3.1 under the restriction (2.8) for given
t° = t are given by the inequality (2.13) or by the inequality (2.1%).
The minimum norm {|°||* of the functional ¢°, solving the problem (3.%) for
given ¢t and z, is given by Equation (2.11). Necessary and sufficient condi-
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tions for the solvability of problem 3.1 under the restriction (2.8) for all
t = T is determined by the inequalities

max; inf; & (¢, z) > 1 or sup,inf; a (¢, 2) > 1 (3.8)
For simplicity of calculations we restrict ourselves to a further case
where ¥ 1s a scalar and the norm fp||* relates to one of the standard func-
tional spaces. Theny =h () Z where £ 1s a n-dimensional vector. The gl
elements in condjtions (%'9)ﬁ in this case are determined by Equations

0@t ) =R NGt f bt )bt 1) (3.9)
je=1 k=
where ftJ and ftfl are glghen%s of the matrices 7 and # !respectively. If

the matrices 4, ¢, B and F in Equations (2.1), (3.1) and (3.2) are associ-
ated by the relationships

Q= — A¥*, H = B* (3.10)
where the symbol * denotes transposition, then for ¢ = ¢t° the elements (2.18)
and(3.9) coincide, which follows from known properties of linear systems in
[7]. Thus the problem 3.1 on the observation of the quantity p (2) -z (f + 9)
by means of the function y(¢ + t) for the systen (3.1), (3.2) under condi-
tions (3.10) is equivalent to problem 2.1 on the control of the system (2.1)
from the point $°=1¢, z (t°) = 2° to the point z (£° + ®) = f [z], 1if the
vectors p(z),x° and f[z] are associated by the relationship

p(2) =flzl — X (& t° + 0) z°

This assertlon 1s the expression of the duality principle of Kalman in
[3]. The use of the L-problem in combination with intermediate transforma-
tlons allows one to consider the duality relationship for a rather wide
range of problems with various typlcal restrictions and relations.

4, We examine the interpretation of condition (2.10) of the solvability
of problems 2.1 and 3.1 and also give an interpretation of conditions (2.11)
to (2.14). We first introduce some definitions and notations. Let the
function n(r) be defined on the interval 0 < T < ¢ and let this function
be considered as an element of a certaln functional space with norm p(n).
We shall call the quantity p(n) the intensity of the signal n{r). We shall
assume that the class of functions {{ Cﬂ} (0 S; T ) defines the space in
[8] of linear functionals ¢(n), defined on the functions n(1) with norm p(n).
The norm of the function C(T), which is equal to the norm 6f the correspond-
ing functional ¢, we shall call the intensity of the signal ((+) conjugate
to p(n), and shall denote it by the symbol p*((). On the other hand if the
function n{r) 1s chosen from a class of functions defining linear function-
als @(€) with norm p(n) on some space {€(7)} then the norm of the function
€(7) we shall call the intensity of the signal £(7), the original for p(n),
and shall denote 1t by pyu(g).

We examine the observable system (3.1) and (3.2). Let there exist the
possibility of measuring the quantity y(?) with an error w(t) arising from
some noise. The quantity r () = y() +w () we shall call the complete
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signal, the quantity y(¢) we shall call the noise, and the function ¥ (f)
(3.2) we shall call the useful signal. We assume that an exact value of the
function w(¢) is unknown, but that a class of allowable functions{y(t)} has
veen determined and that we have been gilven an estimate of some sort of in-
tensity p(w) of the signal w(t + 7)(0 T  #). We assume for definiteness
that w(t) is a continuous function and that

pW) = max, |w(t+ 1)| for t&T ad 0<T<SE (4.1)
whereby the bound 1s gilven

pw) <8 (for tT) (4.2)
Note 4.1. The considerations which follow below also carry through

in the general case of p(w) and may be made specific for other typical in-
tensitlies p(w), for example for the case

8
p) =[{1wt+ opar]”
(]

In this case the conjugate intensities p*(w) should change accordingly
with the change in the character of p(w).

If there are no additional restrictions on the ouperation ¢, which solves
problem 3.1, then it is natural to put a question about the determination of
an operation computing p (z).z (t + ), such, that in the presence of nolse
w(t) (4.2) gives the smallest absolute error. The resolving operation

elt, rt+ =p(2)-z2(t + 9 + o, (0, — error) (4.3)
1s sought in the form of a linear functional
ot r(t+ vl = § rit+ v d.l(zt 1) (4.4)
generated by the function { (2, ¢, T) (2) < 7 < ) with the norm
lg* | =p*(5) = § | d:L (2, ¢, )] (4.5)

0
where for every fixed space z and every value of ¢ the expression ?_.‘,(z, t, ‘I.’)

is & function of T with bounded measure. In this case

8
Vy(t+0dl(zt,v=p() 2+ (4.6)
0
8
Yo+ 9dtat =0, (47
8
o (0 =supo| {0 (t+ 0 dL (s t, D] for pw=1 (4.8)

0

We shall call the quantity A, ; = SUPy | ©y| the absolute error of the
operation p under the condition p (w) << 8. In accordance with (4.5) to (4.8)
we have A, ; = 8p* ([). Thus the problem of the cholce of the operation ¢
which gives the smallest error A,.t, for a given z and ¢ means that it 1s
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necessary to find a function [ (z, ¢, T), which satisfies condition (4.6) and
which has the smallest conjugate intensity p*({) (4.5). Hence let the quan-
tity 2z be fixed at the outset.

On the ground of the results cited in Sections 2 and 3 we obtaln the
following result. We denote by the symbol y (l, t, ‘l') the quantity

y(,t,v) = 0 Lg (s, ¢t, 1) (4.9)

i=1
where the quantities g(!) are determined by the equality {(3.9). The sciution
signal {(z, t, T) (4.6) exists for every t & T if, and only if

min,; [P (y (lv t T))] = 0 (t’ Z) > 0 for l.p(z2)=1,te&T (4'10)

o
The smellest attainable error A,', 1s given by the quantity

o 8
= 4.11
Az.t o (t, Z) ( )
and the optimum solution signal {° (2, f, T) satisfies the condition

8
fyr e 9aren g —max =1 fo r@=gpy ‘12
0

where 1° 1s the solutlon of problem (4.10).

The results that have been obtalned can be visualized in the following
manner. We shall say that the usefulsignal y (¢t + 1) (0 < T <C D) carrtes
the quantity p (2) -z (t + @) = 1, if it is generated by a motion Z (t) of the
system (3.1) in accordance with (3.2) which satisfies the condition

p(z)-z(t+ 9 =r.

Then the quantity ¥ (1, t, T)(4.9) in problem (4.10) is none other than the
useful signaly (£ + T),carrying the unknown quantity p (z) -z (¢ + ¢) = 1.
Hence the problem (4.6) on the computation of p (z) -z (¢ + ) by means of
y (¢t 4+ 1) (3.2) 1s solvable if, and only if, the smallest intensity

ply (t + 1)

of the signal y (t + 1:), carrying the quantity p (z) -z (t 4+ 9) = 1, remains
posjtive for all te=T.

Now let the vector z be chosen from a bounded closed set Z, p (z) depend
continuously on z and T is the interval ¢, < I < 3. Then the following
conclusion 1s valid. If there exists such a ze&= Z,for which the smallest
intensity p (y (t + 1;)) of the signal ¥ (t + 1), carrying the quantity

p(2-z(t+19) =1,
remains positive for alll € T, then there exists an optimum solution opera-
tion ¢ generated by the function (°(¢, 7). This optimum operation gives the
smallest absolute error

A = min,max; A= o, o =max;ming (52  (413)
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and satisfles the conditions
k3
¢ i
\y (I° t, 1) d.° (t, 7) = 1 = maxy for ZI* =p* Q)=+

<

where 1° is the solution of the problem {4.10) for t & T for z solving the
problem (4 13). The result that has been obtalned with account taken of the
principle of duality between problems (2.1} and (3.1} can be formulated in
general form in the following manner.

The signal ¥ (¢ -+ T), carrying the quantity p (2) -z (£ + 9) =1 ana
having the smallest possible lntensityp (y),we shall call the minimum and
shall denote it by the simbol [¥°(t + )|y = 1, pl.

Theorem 4.1. The problem 3.1 on the observation of the quantity
P (2) -z (¢ -4 O)by means of the signaly (f)(3.2) has a solution if, and only
if, it is possible to find z & Z,for which the intensity P (?/o) of the mini-
mum signal [y° (¢ 4 1) v = 1, p] 1s aifferent from zerc for all t & T. If
in this case there is given the bound p () <C 8 on the intensity of the noise
w(t), then the lower limit a8°of the errora in the determination of the quan-
tity p (2) -z (t + 9) by means of the complete signal r(f) = y (t) + w (f)
1s determined by Equation

A° =8/a, o =sup;infia (¢ 2)
Here a (, z) 1s the intensity P (y¥°) of the mimimum useful signal

[y° (¢ + ) |7 = 1,.pl
In the case when sup;infia (¢, zZ) 1is attained on Z, there exists an optimum
solution operation ¢° for which 4 = 8°. Besides, the optimum solution sig-
nal ¢°{z, 7) has the conjugate intensity p*{(°) = 1 / a and is distinguished
from all other signals ¢ with intensity p*({) = 1 / a by the property that on
the useful minimum signal [y° (¢ + 7) |y = 1, p] the operation ¢°, generated
by the function (°, glves the largest possible value.

Theorem 4.2, Let there be given problem 2.1 on the control of
system (2.1) from the point z°, {®on the manifold ¥ (2.2) under thé condition
that the intensity of the control signal U (t° -+ T) © LT ‘ﬁ) (or the
signal ¢, where d,; = ud ‘IT) is restricted by the lnequallty p (u) < 1 (or

p (D) <)

Problem 2.1 has a solution if, and only 1f, it is possible to chose Z & Z,
satlsfying the following condition: the original intensity p, (¥°) of the
minimum signal [y° (8° 4+ T) |y =1, pel (O < v << ¥ [2]) of the adjoint
observable system dx/dt = —A¥ () z, y = B*x satisfies the condition

P () > 1, and p(2) = f lal — X (¢°, t° + 9) 2°.

For such a choice Z the optimum control signal u°{¢’+ 1) {or ¢°(:°, 7))
has the intensity

p(u) =1/al(z, a(2) =pe [(¥° (° + D)7y =1, p,))
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and 1t 1s distingulshed from all ‘other signals with intensity p = 1 !q (z)
by the property that on the minimum signal [¢° (¢° 4 1) |7 = {, p*] the ope-
ration ¢°, generated by function w° (or (°), has the largest possible value.

Thus the optimum signal (°(¢, T) has the property that it produces the
largest possible value in the most unfavorable case of a useful signal
¥ (t - 1) (from the point of view of the intensity p (¥)). As has been
shown above this property of the signal (° follows from the solution of
problem 3.1, based on the theory of the L-moment problem. It is useful,
however, to interpret fhe conclusions adduced above from another polnt of
view.

5. We shall compare problem 3.1 with a game [9]. Let us examine prob-
lem 3.1 afresh, supposing 2 and ¢ are fixed, and for definiteness, we shall
assume that the intensitles of the signals y (f - 1) and ((¢, 1) are defined
by equaliltles

3
PO =max|y+9l @ ={dl ] (5.4)

Game 5.1. The strategy of thé first player are the functionsof ((r)
with intensity p* ({) <{ 1,and the strategy of the second player are the
functions of ¥ (f), satisfying the conditiocns

y () =h()-z(v), z(M=F@E+9t+1z®
p(2)-z(®) =1

The utility function u 1s determined by Eguation
i3

p Lyl ={y@d2( (5.2)

0
The goal of the first player 1s to obtain the largest possible value of

W, and the goal of the second player 1s to obtain the smallest possible va-
lue of uy.

It turns out that the game 5.1 has a saddle point (9] ({°, %°), that is
p [2° ¥°] = maxy minyp = miny MaxgR, and besides

p I, gyl >plts vl pltyl<<p Loyl (5.3)

Consequently, (° and y° are really the best possible strategles for the
first and second players. The optimum strategy y" is naturally determined
by the condition p(y°) = min, p (y) =a (¢, z}, and the optimum strategy (°
satisfies the condition p [{°, °] = maxy p [E, ¥°] for P*(0) = 1. 1t
folliows, therefore, that the optimum strategy %° (T) of the game 5.1 coin~
sides with the minimum useful signal [y° (¢ -+ 1,')! T =1, pl, and the optimum
strategy §° (t) =a (¢, 2) L° (¢, 7), where (°(¢, 1) is the optimum solution
signal of problem 3.1. To clarify why just the function ¢°(1) is the solu~
tion signal of the problem 3.1, that is why it gives the quantity
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P (2) z (8) = 14, for all y (T) and not larger as it is possible in accordance
with (5.3), we shall note one property which the optimum strategy ¢°(71) has
in the present case. In the theory of games the theorem [9] 1s known: if
¢° and s° are the optimum mixed strategles of a certain game plg, 8] and
is an arbitrary active strategy of the second player (l.e. s 1s a strategy
contained in the mixed strategy s°), then the following equality is valid

p lg° sl =n(g° s°] (5.4)
It turns out that the construction of the game 5.1 in the known sense 1is
sufficiently analogous to the construction of a game with mixed strategy
that an arbitrary strategy ¥ (1:) turns out to have the above indicated pro-
perty of active strategles g. Hence the assertion is true.

Theorem 5.1. The problem on the optimum signal ¢°(¢, 7) which
for the system (3.1) regenerates the quantity p (2)-z (¢ 4 'ﬁ)‘,by means of
the signal y (¢ + 1) (3.2) under the condition of minimum intensity p*(()
is equivalent to the problem on the cholice of an optimum strategy (°(r) in
the game 5.1. The game 5.1 has a saddle point ({° (T), ¥° (1)). The strategy
¢°(1) coincides with the signal ¢°(¢, ) within a factor « (t, z), and the
strategy ¥° (T) colncides with the minimum signal [y° (t 4+ 1) |7 = 1, pl.

The strategy (°(t) of the game 5.1 turns out to be the solution signal
for the problem 3.1 for the following reason: an arbitrary strategy y (T)
of the game 5.1 relative to (§°, y°) has the property (5.4), which is charac-
teristic for active strategles s of extended finite games [9].

Note 5.1. If the intensity p*(() is determined by equality (5.1),
the analogue of the problem 3.1 to the theory of games may still be conti-
nued by a visual method. In fact., let us assume that the first player has
only the pure strategles (T (t,t,) of the form d,C*- (v,t,) ==z=6(v—1,)ar,
where 6(75) denotes the delta functlons and 1, are every possible numbers
from the interval [0, {].

Then the optimum strategy £ (v may be interpreted as a mixegd strategy,
where the pure strategles §(T,T,) enter with probability |d . L°(v,)|.

5.2. We consider the problem 2.1 on the optimum control [1] (for defi-
niteness under the conditionp (u) = sup.|u (%) l = min).The solution u°(r)
of thls problem 1s determined by the maximum principle [1] from which it
follows that

(V°, u’)y=max H (¢°, u) = max (V° (1)-bu (7)) for [u(7)| <P ()
where §°(71) is the solution of Equation di / dt = — A* () V. By the duality
principle the problem on observation 3.1 corresponds to the problem on cont-

rol (2.1). In accordance with Theorem 5.1 the problem 3.1 is in turn equi-~

valent to the game 5.1, where exactly
Y

)
wlu (), y (M = SHdr = ‘\q; (V)-bu (v) dv,  y () = (1)-b

0



12 N.N. Krasovskili

Hence Teorem 5.1 shows, in particular for the class of problems considered,
a possible interpretatlon of the maximum principle as conditions mMax, mimp
for a game selected in a corresponding way. In this case it 1s to be stres-
sed that the element ¢°, which appears in the maximum principle, should
satisfy the maximum condition for the game

u=\H(@, ude

OB ey U3

5.3. The connectlon between the problem on cobservation and the game 5.1
which has been examined in this sectlon 1is explained by the fact that I-prop-
lem and the problem of the separation of sets upon which one usually inves-
tigates games with a saddle point are of analogous nature in terms of the
formulation of the problem and in terms of the method of investigation.

6., We consider an example. Let it be required to stabilize the system

dz / dt = Az + bu {6.1)

by means of the control u = p-z, whereby the quantities r{t) = h-2 () +w (8),
jw (&) ] < 8. are to be measured. In accordance with the procedure described
in [10], one may successively solve the problem on the stabilization of
system (6.1) and then the problem on the observation of the quantity p-z (¢)
by means of y (f). Let the Equation a4 + bin (2) — Ay | = 0 have, in all
cases, the roots ?v,‘ with Re ),k <0 =1, ..., n), whénever the vector p (z)
changes within the limits

p(z)=p° 4Dz (~ej<zj<85,l)={dﬁ},i=’.l,...,n;;'-——i,...,k) 6.2
Then in the process of the solution of the problem on the stabilization

(6.1) there arises the problem [10] on the observation 3.1 as follows: for

a chosen ® >>0 £ind # from (6.2) and an operation g [r ()] (0 < v < D), which

regenerates the quantlty p (z).z (f) by means of r(t) and with the smallest
error, where

plrt+dVl=9ly+ Dl +olwi+ Dl=p@zi+ 8 o,
dz [ dt = Az, y=h=z

It was shown above that thils problem reduces to the following problem:
éfind and a function (°(7) forgwhich

S g(,n o) d, e (r) = P; (2), o* () —._.—S id‘t{;o ()] = minz;‘ P gt (0= W* (%) A9 (6.3)
o (g%, ¥ are row vectors)

The problem is solvable. if. and only if, there exists a z from (6.2)
for which & (z) = min, max, Jy()| >0 ror = (8) p(z) = 1. Let this condition be
fulfilled. ‘“Then the impulse p*(¢”) (6.3) of the optimum regenerating signal
¢°{7) is determined by Equation

1 .
PP = @ = max, a (z} = max, [min;max_|1-g (0]} (6.4)
Ot Ip(d =1, —e;<z;<8, i=1..,8
If by the conditions of the problem the value of the error A = sup, 0,
i1s not allowed to exceed the number v, then the problem is solvable if, and

only if a >4 /%. Changing the scale, if necessary, we rewrite the latter
condition in the form of an inequallty

a>1 (6.5)
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Note 6.1. We assume that p(z) =0 1in (6.2), then sup,a(z) < oo and
the maximum (6.4) is actually attained.

Assuming that the matrix 4 1is nonsingular and that the condition of
general position 1s fulfilled [1,3], that is that the row vectors n*, n*4,
..., h*4*~"‘are linearly independent. Then the functions g( (v) are linearly
independent and for an arbitraryl =0 the expression I -az'rg has & maximum
only at 1solated points rj(i =4,...,5(). Therefore {°(r) satisfles con-
dition

n
°© — — .
e (x) =) %8 (v — %)
i=1
and the unknown operation ¢[r] has the form

plr(¥dl= 2 x; "(Tj)
=

Thus to solve problem 3.1 in the given case 1t 1s necessary to solve
problem (6.4). The quantity max |l.-g (%) |= p (%), considered as a function
of 2z and ] under the conditions p(z):l=1 and (6.2), has the saddle point
(z°, 1°.

This is verified by arguments which are analogous to those that are used
to prove the maximum theorem for extended finite games [9]. Therefore the
solution (z° I°) of the problem (6.4) satisfies condition

n
7 = — g;sign (Z i ’:‘)
j=s1
and the inequality (6.5) 1s equivalent to the inequality

k n
min, [(max, |18 @D+ 3 & B dulyf] 21 for 1=t (6.6
i==1 i=1

In particular, if p;(z) = p;° < z;, then condition (6.6) has the form

n
min, [(max,| L.g@)+ ;] el |]>1 for 1-p° =1 6.7
=1

In this case the problem considered 3.1, colnclides with the problem on
the control of the system dz /dt = — A*z + hu from the point z° =0, t*=0
into {e,}, a vicinity of the point p°, by means of the force u(t)whose im-
pulse 8

S |u(%)|dv
0
does not exceed unity. The condition of observability and controllability
(6.7) can also be deduced in an other way, for example, by considering the
problem (6.3) as an L-problem on the elements of the space
Mpi=1...m0®0<T<H

with norm

Inf= 3 1n;| + max 0 ()|
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