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We consider ooe possible Interpretation of the conditions which determine 
the optimum regenerating signal In a linear observable system. 

1. In the theoryofoptlmal processes two problems, among others, play an 

essential role. 

1. The problem of control, that Is, the problem of the choice of forces 

which carry a controlled object from one given state Into another. 

2. The problem of observation, that Is, the prcblem of the operation 

which determlnes the unknown present (time varying) coordlnatesofthe object 

In terms of allowed observable quantities. 

These problems have been examined, ln particular, within the bounds of 
the theory of optimum processes based on the maximum prlnclpleof Pontrlagln 

E$ 
and from the standpoint of the theory of dynamic programing of Bellman 
The problems of the observation and control of linear systems under 

the'condltlon of the minimum of a quadratic quality criterion were studied 
by Kalman [3], whereby a duaJlty between the problems of control and obser- 
vation were established. A number of apers have been devoted to applied 
problems of control and observation. 'E See, for example, [43). 

One of the possible approaches to the linear problems 1 and 2 Is assocl- 
ated with the theory of the L-problem of moments [5]. Such an approach to 
the problem of cohtrol was suggested in [6]. The Idea of this method Is to 
interpret the problems of the computation of control forces or computation 
of regenerating signals as problems of the construction of linear functlon- 
als which take on given values on certain known elements. In this process 
the problem must be transformed In such a way that the bounds or the estl- 
mates to be minimized, can be expressed In terms of norms of the unknown 
functional. The goal of the present paper is to Interpret, ln the sense of 
the problem of observation and from the standpoint of the duality principle, 
those relationships which determine the optimum solution of problems 1 and 
2 by an approach to these problems that uses the method of the L-problem of 
moments. 
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2. We examine the linear dynamic system 

dx 
(jj = A 0) 5 + B (t) u (2.1) 

where x Is the n-dlmenslonal state vector of the coordinates of the control- 

led object; u is the r-dimensional vector of the control forces;, A(t), P(t) 

are continuous or piecewise-continuous matrix functions of the corresponding 

dimensions; and t Is time. 

N 0 t e 2.1.. In Equation (2.1) the coordinates Us,..., ur of the vector 
~1 are either force quantities actually applied to the object or u 
titles associated with the applied control forces and Introduced 

are quan- 
into 

tier, (2.1) In a form convenient for the Investigation of the problem. 
Aqua- 

We examine first the problem of control. 

P r o b 1 e m 2.1. We have given an initial state{t', 2'),of the object 

and a manifold M of its finite states (t' , a~‘), described by the parametric 
equations 

2 = f 121, t = to f 6 [zl (2.2) 

where I Is a k-dimensional vector of the parameters limited, say, by certain 

condition which we write symbolically as 

ZEZ (2.3) 

In addition there may be given supplementary limits and constraints. 

The problem consists of determining the values of z" and of the function 

u(t)(t’ < i? < i!'+fi)whlch satisfy the given limits and which are such that 

;g-ui;;(t) th ere exists a motion x(t) of the system (2.1) satisfying 

5 (P) = x0, 32 (t’) = f [fl, t’ = to + 6 [z”l (2.4) 

For completeness, we describe the approach to the solution of the problem 

2.1. The solution x(t)of Equation (2.1) we write In the form 

2 (t) = x [t”, tl x0 + i x [t”, tlX-1 [t”, zl B (z) u (z) dz (2.5) 
;. 

where X Is the fundamental matrix of the solutions of Equation (2.1) for U S 0. 

We set's (t) = f [z] and t = to + 6 [z] into (2.5) and transform 

the obtained equation into the form 
@IsI 

s G [z, to, ~1 v(z, to, z) d,c(z, to, z) = c (z) P-6) 
0 

or.in terms of coordinates, 

fi G [z, to, zl v [z, to, z] d,C, (z, to, T)}, = ci (4 
,l 

(2.7) 

so that the left side of (2.7) can be Interpreted as the values of a certain 

linear functional rp (generated by Functions u and 6) on the known elements 

g(‘) (2, i!‘, Z) (0 <‘C < e), determined by the matrix G, and so that the given 

conditions can be expressed In the form of the bound 
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u’pu*s (2.8) 
on the norm llrpll* of the functional cp. Here the quantities V(Z, to, Z) and 

d,c(~, to, Z) coincide with the quantities ~(7) and do , respectively, or are 
associated with them by a certain transformation which is introduced for the 

purpose of interpreting the given bound In the form of (2.8). The problem 
2.1 has been reduced to the construction of a functional $J [to, g(Z)], which 

satisfies conditions (2.8) 

Q, It”, g(l) (2, to, z)l = Ct (2) (i = 1, * . ., a) 12.9) 

We shall denote the scalar product of the vectors p and 1 by the symbol 

q-2. For the fixed z the problem (2.9) has the solutionq [to, g(Z)]if, and 

only if, L53 

a (t”, 2) = mini 11 il kgti) (G to, 4 /ii > 0 for~C(Z)l==l (2.10) 

where 1161(7)// is the norm iA=tlhe functional space(g(Z)} (0 < 7’f 8)onwhich 

the functional rp Is defined and which contains, in particular,the g"'element.3. 

In this case the minimum norm Ilcp"\l* of the functional cp, satisfying the con- 

ditions (2.9), is determined by Equation 

II 0” II* = Q (zt fJ) (2.11) 

and the functional cp' Itself satisfies the condition 

rp" It", go1 = max,(cp [to, goI) = 1 for JI cp #” = u-1 (2.12) 

Here go = r, &"g(i) is th e solution of the problem (2.10). Hence the 
problem 2.1 under the bound (2.8) Is soluble if, and only If', 

or 
a 0") = max, a (to, 2) > 1 for 2 EZ 

SUP2 a GO, 4 > 1 for z fZ 

(2.13) 

(2.14) 

if the upper side a (to, Z)ls not attalned for .Z E 2. 

N 0 t e 2.2. 
red to [s]. 

In considering the problems (2.8) and (2.9)we have refer- 
In [ 53 it was assumed that the elements g(!) . . ..gf@ _are llne- 

arely Independent. Here the linear independence of -&"~ls not assumed. How- 
ever this does not prevent from the use of the results' of [5]. Indeed, we 
shall verify, for example, the sufficiency of conditions (2.10). Let the 
co#%'p" (2.10) be satisfied. We assume for definiteness that the elements 

&*)are linearly Independent and that 
m . 

g(‘) = p&M (i = m f 1, . . .) n) (2.15) 

The condition (2.10) clearly may beSatisfied only under the condition 
m 

C*=~EJsijCj (i=:m~l,...,n) (2.16) 

I=1 
whereby the following equality is valid 
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From (2.15) and (2.16) it follows that it Is sufficient to satisfy the 
the conditions (2.9) only for I= I,..., 
are automatically satisfied. 

m,since for i>m these conditions 

for i= 1 
Under conditions (2.10), the conditions (2.9) 

ay be satisfied In accordance with the results of [5]slnce 
;;;fe&m~~~~...,&m) are linearly independent. The assertion on the 

conditions (2.10) for the solvability of the problem (2.9) 
without an assumption on the independence of g(') has been proved, and fur- 
ther, as a consequence (2.17), Equation (2.11) has also been proved. In an 
analogous way the necessity of conditions (2.10) can be verified. We remark 
that the theorem on the solvability of the L-problem cited In [ll] on page 
100 Is not accompanied by reservations on the linear independence of the &") 
elements 

The present note was the result of discussion with N.E. Kirin, whom the 
author would like to thank. 

2.3. The scheme of reducing the problem 2.1 to the L-problem of moments 

remains in force wi'hout essential changes In the case when not only the 

finite values x(t') are constrained by the conditions laid down on the 

manifold M, but also when the values x(t,) at an arbitrary other Instant of 

time are so constrained. In this case the manifold M is determined by the 

system of 0quations 

x = f[jJ 121, tj = to + W [z] (i = 1, . . . . 6) 

and likewise the equationx (tj) = f[j' [Zl must be fulfilled. 

2.4. In the comparison of the problem 2.1 with the problem of observa- 

tion we shall assume, for reasons of simplifying the calculations, that In 

(2.1) u(t) is a scalar quantity, B(t) = b(t) is a n-vector, and we shall 

limit ourselves in the L-problem to the simplest functional spaces, that is, 

in equations (2.7) we shall assume that 

v (z, to, Z) = u (T), d,c (z, to, z) = dz or v = 1, u (7) dz = d,c(~). 

Then the elements g(i) and the quantity ct in (2.7) and (2.9) have the form 

g(f) (2, to, z) = i i Xij (to, to f 6) X&l (to, to f T) bk (t” + r) (2.18) 
j=l k=l 

C{ (2) = fi M - i: X{j (to, t” + @) Xj* (2.19) 
j=l 

where xiJ and x1;' are the corresponding elements in the matrices X and X-'. 

2.5. The maximum (2.13) is attained on 2 when the functions o,(z) and 

fi [Z]are continuous and Z is a bounded closed set. The validity of this 

assertion follows from the inequality 

lim sup a (t”, 2) < a (to9 20) for c(z) +c(Zo), VIZ] -, V (201 

which the function a($",.?) Satisfies. 

3. We consider the problem on observation. We are given the system 

dx / dt = Q (t) 5 (3.1) 
y = H(t) 5 (3.2) 

where x is a n-dimensional vector of the state coordinates of the object; 

y is a m-dimensional vector of the observed coordinates; 4(t), At) are 

continuous or piecewise-continuous matrix-functions, and Equations (3.2) do 
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not have a single-valued solution with respect to the vector 5. 

P r 0 b 1 e m 3.1. We have given the number 6 > 0 and the manifold N 
of quantities y[x, a] from which It Is required to choosethe quantity 

r(i!+e), subject to determination by observation of the vector ~(t + 7) 

on the time Interval 0 < z < fi. 

Let the manifold N be tlescrlbed parametrically by Equation 

r Ix, 21 = p (2).x (3.3) 

where 2 1s a k-dimensional vector constrained, say, by some condition (2.3). 

The problem consists of determining a linear functlonalq [t, y (Z)],whl,ch 

Is defined onn-dimensional vector-functions ?J (?) (0 \< r\< e)and whlch'ti 

every value of time t E T under consideration satisfies the condition 

cp kY(t+w =Pw4+~) (3.4) 

where x(t ) Is the motion of the system (3.1), z E 2 and the vector v(t) 

Is determined by Equation (3.2). Additional conditions may be given. 

N 0 t e 3.1. The function y(t-+ z)(O <%a*) which Is observed may be 
associated with the motion r(t + T)by a more complicated linear relation 
than (3.2.). For example one niay give the relation 

y (t c z) = Y (h t-k 4 Y (4 -k S'G i&r, t+ t1 2 0-P OdC (3.5) 

which comes from a differential assocl?atlon dy/dt = D(t)y+ C(t)*. The 
arguments which are adduced below may be easily extended to cases s.Mlar 
to (3.5). 

If the given conditions are reduced to the restriction (2.8);of the norm 

of the functional rp (3.4), or to the requirement IIp/I* - mln for each t E T, 

or to the requlqement SUpt (IICp 11”) = min for some norm llqll*, then the prob- 

lem 3.1 reduces to the L-problem. In fact, the solution x(t)of Equation 

(3.1) satisfies the equality x (t + Z) = F (t, t -k Z) S(r),where F(t”, t) 
Is the fundamental matrix of the solutions of the system (3.1). Therefore 

Equation (3.4) reduces to the equation 

q [t, H (t + z) F (t, t + z F-’ (t, t + +) x (t + *)I = P (2) 5 (t + a) (3.6) 

Taking Into account the linear character of the functional cp and compa- 

ring coefflclerits for 51 (t + 6) on the left and right sides of (3.6), we 

obtain, as above, the system of Equations (2.9), where to - t and 

ci(z)=Pi ) (i = 1, . . .) n) (3.7) 

whereas the elementsgti) (Z, t, ‘C) are expressed In a known way by H, F and F? 

Hence problem (3.4) for fixed I and t Is solvable If, and only If, condition 

(2.10) Is fulfilled (for C(Z) = p (Z)). Necessary and sufficient conditions 

for the solvability of problem 3.1 under the restriction (2.8) for given 

to - t are given by the Inequality (2.13) or by the Inequality (2.14). 

The minimum norm (lr~“ll* of the functional cp", solving the problem (3.4) for 

given t and Z,ls given by Equation (2.11). Necessary and sufficient condl- 
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tions for the so1vabllltyofproblem 3.1 under the restriction (2.8) fop all 

t Ei T 1s determined by the inequalities 

max, inft a (t, 2) > 1 or supz inft u (t, 2) > 1 (3.8) 
For simplicity of calculations we restrict ourselves to a further case 

where Y is a scalar and the norm licpll* relates to one of the standard func- 

tional spaces. ThenY =h (t) Zwhere h is an-dimensional vector. The g(i) 
elements in cond$tions ($.9)ri in this case are determined by Equations 

g"' (', ', '1 = 2 2 fj;' ltY t + fl) fkj (t, t + r) hk (t + r) 

where .fij and fu-j;' 
j-=1 k=i 

(3.9) 

are elements of the matrices F and F'lrespectlvely. If 

the matrices A, 4, B ami H In Equations (2.1), (3.1) and (3.2) are associ- 

ated by the relationships 

Q=-A*, H =B* (3.10) 
where the symbol * denotes transposition, then for t = to the elements (2.18) 

and(3.9) coincide, which follows from known properties of linear systems in 

[7]. Thus the problem 3.1 on the observation of the quantity p (Z)*Z(t + 6) 
by means of the function g(t + T) for the syste!.l (3.1), (3.2) under condi- 
tions (3.10) is equivalent to problem 2.1 on the control of the system (2.1) 

from the point i!'= t, Z (to)= 2' to the point z(t' + 6) = f [z], If the 

vectors p(r),x" and f[s] are associated by the relationship 

p (2) = f [zl - x ‘(to, to + @) x0. 

This assertion is the expression of the duality principle of Kalman in 
r33 * The use of the L-problem in combination with intermediate transforma- 
tions allows one to consider the duality relationship for a rather wide 
range of problems with various typical restrictions and relations. 

4. We examine the interpretation of condition (2.10) of the solvability 

of problems 2.1 and 3.1 and also give an interpretation of conditions (2.11) 

to (2.14). We first introduce some definitions and notations. Let the 

function n(7) be defined on the interval 0 < Z < 8 and let this function 
be considered as an element of a certain functional space with norm p(n). 

We shall call the quantity p(n) the intensity of the signal n(7). We shall 

assume that the class of functions {f(r)} (0 .$ 'c < fi) defines the space in 
[8] of linear functlonals q(n), defined on the functions Q(T) with norm p(n). 

The norm of the function C(T), which is equal to the norm of the correspond- 

ing functional rp, we shall call the intensity of the signal C(T) conjugate 

to p(n), and shall denote it by the symbol p*(C). On the other hand if the 

function n(7) is chosen from a class of functions defining linear function- 

als ~(5) with norm p(n) .on some space {C(T)] then the norm of the function 

~(7) we shall call the Intensity of the signal C(T), the origina for P(7), 

and shall denote it by p,(s). 

We examine the observable system (3.1) and (3.2). Let there exist the 

possibility of measuring the quantity z/(c) with an error m(t) arising from 

some noise. The quantity r (i!) = IJ(~) +w(t) we shall call the complete 
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signal, the quantity w(t) we shall call the noise, and the function y (t) 

(3.2) we shall call the useful signal. We assume that an exact. value of the 

function w(t) Is &own, but that a class of allowable functlons{&t)) has 

been determined and that we have been give? an estimate of some sort of in- 

tensity p(w) of the signal u(t + ~)(0<'7< 6).We assume for definiteness 

that w(t) Is a continuous function and that 

whereby the bound Is given 

P(w) \<S (for tET) (4.2) 

N 0 t e 4.1. The considerations which follow below also carry through 
In the general case of p(w) and may be made specific for other typical ln- 
tensltles p(u), for example for the case 

P(W) =[\ Iwo+ wd7]up 

0 

In this case the conjugate intensities p*(w) should change accordingly 
with the change In the character of p(v). 

If there are no additional restrictions on the vperatlon cp, which solves 

problem 3.1, then It Is natural to put a question about the determination of 

an operation computlngp (z).~ (t + fj), such,that in the presence of noise 
u(t) (4.2) gives the smallest absolute error. The resolving operation 

cp It, r (t +-$I = p (Z)‘Z (t + 8) + 0s (au,- error) (4.3) 

Q [t, r (t + $1 = \ r (t -I- z) d,C (2, t, r) 
i 

(4.4) 

generated by the function 5 (2, t, Z) (0 < Z < *)wlth the norm 

II@+ II= p*(C) = i l 45 (z9 tv 41 (4.5) 

where for every fixed space E and everytalue of t the expression c(Z, t, 7) 

Is sought In the form of a linear functional 
a 

Is a function of T with bounded measure. In this case 
a 

s y ( t+ z) 45 (2, t, 4 = P (4’Z (t + a> 
0 

(4.61 

(4.7) 

for p(w) = 1 (4.6) 
0 

We shall call the quantity A,,t = SUP, 1 Owl the absolute error of the 

operation cp under the condition p(w) < &. In accordance with (4.5) to (4.8) 

we have A,#t = a,~* (5). Thus the problem of the choice of the operation cp 

which gives the smallest error Az,t, for a given I and t means that it 1s 



8 N.N. Kmsovskll 

necessary 

which has 

tity s be 

On the 

following 

to find a function 5 (2, t, z), which satisfies condition (4.6) and 
the smallest conjugate intensity p*(C) (4.5). Hence let the quan- 

fixed at the outset. 

ground of the results cited In Sections 2 and 3 we obtain the 

result. We denote by the symbol 9 (I, i!, T) the quantity 

y (1, t, z) = i 4g(‘) (2, t, z) (4.9) 
i=l 

where the quantltlesg(4)are determined by the equality (3.9). The sciution 

signal c (z, t, Z) (4.6) exists for every t E T if, and only if 

mini [p (y (I, t, %))I = a (G 4 > 0 for Z-p(z) = 1, t ET 

The smallest attainable error A$ Is given by the quantity 

(4.10) 

Az:t = & , (4.11) 

and the optimum solution signal 5” (2, i!, ‘C) satisfies the condition 

a 

s y (ZO, t, z) 4ZJY (2, t, z) = maxc = 1 for P* (5) = & (4.12) 
0 

where lo Is the solution of problem (4.10). 

The results that have been obtained can be visualized in the following 

manner. We shall say that the usefulsignal y (t f z) (0 < 'C < 6) carries 

the quantity p (2) ‘2 (t + fj) = 7, lflt is generated by a motion z (t) of the 

system (3.1) in accordance with (3.2) which satisfies the condition 

P(Z)*Z@$fi) =r* 

Then the quantity ~(2, t, 2)(4.9) In problem (4.10) Is none other than the 
useful slgnaly (t + Z), carrylng.the unknown quantity p (z).z (t + 6) = 1. 
Hence the problem (4.6) on the computation of p (~)a$(,? + 6) by means of 

y (t + Z) (3.2) 1 s solvable if, and only If, the smallest Intensity 

P(Y (t + 4) 

of the signal y (t + z), carrying the quantity p (z) *Z (t f 9) = 1, remalns 
positive for all t E T. 

Now let the vector z be chosen from a bounded closed set 2, p (2) depend 
continuously on z and l' Is the Interval i!, < t < t,. Then the fo'llowing 

conclusion Is valid. If there exists such a ZEZ,for which the smallest 

lntenslty p (y (t + r)) of the signal Y (t + Z),carrylng the quantity 

&J*Z(t+fi) = 1, 

remains positive for all f e T, then.there exists an optlmum solution opera- 

tion cp generated by the function C”(t, T). This optimum operation gives the 

smallest absolute error 

A = minz maxi A,J = $, a = max, mint a (t, 2) (4.13) 
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and satisfies the conditions 
9 

\ y (Z”, t, 2) d,5” (t, z) = 1 = maxt for 11611’= P* (1;) = $ 
. 
0 

where 1’ is the solution of the problem (4.10) for tE T for P solving the 

problem (4 13). The result that has been obtained with account taken ofthe 

principle of duality between problems (2.1) and (3.1) can be formulated in 

general form in the following manner. 

The signal y (t + I$, carrying the quantity p (2)*X (t -/- 6) I- 1 and 
having the smallest possible intensityp (y),we shall call the minimum and 

shall denote it by the simbol fy'(t + 7)/r = 1, p]. 

T h e o r e m 4.1. The problem 3.1 on the observation of the quantity 

P (4 *z (t -t 0) by means of the signal y (t)(3.2) has a solution If, and only 

if, It is possible to findz E Z,for which the Intensity P (9") of the mini- 

mum signal [y" (t f Z) r = 1, pf is different from zero for all t E T. If 
in this case there is given the bound P(W) < 8 on the intensity of thenoise 

w(t), then the lower limit A"of the errorA In the determination of the quan- 

tity p (Z).Z(t -/-- 6) by means of the complete signal r(t) = ?,J (t) -/-w(t) 

is detkrmined by Equation 

A0 = B I a, a = supI in& cL (t, 2) 

Here a (t, 2) is the intensity P(y*)of the minimum useful signal 

[y" (t + t) Ir = h.Pl. 

In the case when SUp,inffa (t, 2) is attained on 2, there exists an optimum 

solution operation cp" for which A = Aa. Besides, the optimum solution sig- 

nal c"($, 7) has the conjugate intensity pX(Co) = 1 /a and is distinguished 

from all other signals 6 with intensity p*(C) = 1 /a bytheproperty that on 

the us~iul minimum signal [y”(t -f ‘C)lr = 1, p] the operation cp", generated 
by the function co, gives the largest poss1bl.e value. 

T h e o r e m 4.2. Let there be given problem 2.1 on the control of 

system (2.1) from the point to, t”‘on themanifold ,V (2.2) under the condition 
that the Intensity of the control signal u(t' + 7) (0 < T f fi) (or the 

signal 6, where d,c * Ud 'C) is restricted by th,e inequality P (U) < 1 (or 

P (5) Q 1). 

Problem 2.1 has a solution if, and only if, It is possible to chose ZE 2, 

satisfying the following condition: the original intensity p*(y*) of the 

minimum signal [y" (to -j- Z) 1 y = 1, p*l (0 \( ‘C \( 2) [zl) of the adjoint 
observable system- ax / &! 

PdY")>h and P(z) = 

For such a choice 2 the 

has the lntenslty 

p (UO) = 1 I a (z), 

= -_A* (t);, y = B*s- satisfies the condition 

f 121 - x (t”, to + 6) so. 

optimum control signal u”(tP+ T) (or <“(to, T)) 

a (2) = P* KY" (to + r)lr = 1, P,I) 
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and it is dlstinguished from all'other signals with intensity p = 1 /a (z) 

by the property that on the minimum signal f$(t" $- z)lr = 1, P*] the ope- 

ration vb, generated by function U' (or co), has the largest possible value. 

Thus the optimum signal c"(t, 7) has the property that it produces the 

largest possible value in the most unfavorable case of a useful signal 

$J( t + 'C) (from the point of view of the Intensity p (~)). As has been 

shown above this property of the signal Co follows from the solution of 

problem 3.1, based on the theory of the L-moment problem. It is useful, 
however, to interpret the conclusions adduced above from another point of 

view. 

5. We shall compare problem 3.1 with a game [93. Let us examine prob- 

lem 3.1 afresh, supposing Z and 2 are fixed, and for definiteness, we shall 

assume that the intensities of the signals y (t + z) and C(t, T) are defined 

by equalities 

P (~4) = maxTly (t + x) I, P* (5) = !I 45 (G 4 I (5.4) 
0 

G a m e 5.1. The strategy of the' first player are the functionsof 6(~) 

with IntensityP* (5) < l,and the strategy of the second player are the 

functions of 3 (t) , satisfying the conditions 

y (4 = h ($5 (4, Ic (z) = F (t + 6, t + z) z (6) 

p (2)‘5 (6) = 1 

The utility function P is determined by Equation 
A 

The goal of the first player is to obtain the largest possible value of 

p, and the goal of the second player is to obtain the smallest Possible va- 

lue of P. 

It turns out that the game 5.1 has a saddle point [ 93 (r, TJ”), that is 
p [co, $1 = maxc min,p = min$ max~p, and besides 

(5.3) 

Consequently, Co and$are really the best possible strategies for the 

first and second players. The optimum strategy ?J'is naturally determined 

by the condition p(y’) = min, p (y) =a (t, Z),and the optimum strategy Co 

satisfies the condition ~1 [co, y”] = maxc p 15, ~“1 for p* (5) = 1. It 
foiiows, therefore, that the optimum strategy 7J* ('C) of the game 5.1 coin- 

sides with the minimum useful signal fy’ (t + Z) 1 7 = Li,Pl, and the optimum 

strategy y(z) ==a (t, z) r(t, .z), where C"(t, 7) is the optimum solution 

signal of problem 3.1, To clarify why just the function C"(T) is the solu- 

tlon signal of the problem 3.1, that is why it gives the quantity 
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p (2) 5 (6) = 1, for all y (Z) and not larger as It Is possible in accordance 
with (5.3), we shall note one property which the optimum strategy CO(T) has 

in the present case. In the theory of games the theorem [g] Is known: if 

Q0 and so are the optimum mixed strategles of a certain game p[q, s] and s 

Is an arbitrary active strategy of the second player (I.e. s is a strategy 

contained in the mixed strategy so), then the following equality is valid 

(5.4) 
It turns out that the construction of the game 5.1 in the known sense is 

sufficiently analogous to the, construction of a game with mixed strategy 

that an arbitrary strategy y (Z) t urns out to have the above Indicated pro- 

perty of active strategies e. Hence the assertion is true. 

T h e o r e m 5.1. The problem on the optimum signal C"(t, T) which 

for the system (3.1) regenerates the quantity p (2)-z (t f Q),by means of 

the signal ?J (1 + -C) (3.2) under the condition of minimum intensity p*(C) 

Is equivalent to the problem on the choice of an optimum strategy C'(T) in 

the game 5.1. The game 5.1 has a saddle point (5" (Z),$ (T)). The strategy 

c'(7) coincides with the signal C"(t, 7) within a factor a(t; z), and the 

strategy y” (z) coincides with the minimum signal [ZJ" (t + r)lr = 1, p]. 

The strategy C'(T) of tne game 5.1 turns out to be the solution signal 

for the problem 3.1 for the following reason: an arbitrary strategy y (z) 

of the game 5.1 relative to (co, 7J") has the property (5.4), which is charac- 

teristic for active strategies s of extended finite games [g]. 

N 0 t e 5.1. If the Intensity p*(C) Is determined by equallty (5.1), 
the analogue of the problem 3.1 to the theory of games may still be conti- 
nued by a visual method. In fact., let us assume that the first player has 
only the 

P 
ure 

where 6(~ 
strategies c* (r,t,) of the form d&I* (r,T,) = + 6 (z- Z,)QZ, 

denotes the delta functions and T+ are every possible numbers 
from the Interval [0,6]. 

Then the optimum strategy 5"(r) may be Interpreted as a mlxe 
where the pure strategies <(z,T,) enter with probability [d, P 

strategy, 
"('c,)I. 

5.2. We consider the problem 2.1 on the optimum control [l] (for defl- 

niteness under the condltionp_(u) = SupIlu (Z) 1 = min).The solution ILO('T) 

of this problem is determined by the maximum principle [l] from which it 

follows that 

($", z.P)=max H @I“, u) = max (I&” (z).bu (z)) for I u (r) I 6 P (u") 

where q'(T) is the solution of Equation a$ f & = -_A* (l)ql. By the duality 

principle the problem on observation 3.1 corresponds to the problem on cont- 

rol (2.1). In accordance with Theorem 5.1 the problem 3.1 is In turn equi- 

valent to the game 5.1, where exactly 

~1 [u (z), y (T)I = j Hdz = \q (z).bu (z) dz, Y (r) = 9 (z).b 
0 ;’ 
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Hence Teorem 5.1 shows, inparticular for the classofproblems considered, 

a Possible interpretation of the maximum principle as conditions max,,min,+~ 

for a game selected in a corresponding way. In this case it is to be stres- 
sed that the element $", which appears in the maximum principle, should 

satisfy the maximum condition for the game 

5.3. The ConneCtIOn between the problem on observation and the game 5.1 

which has been examined in this section is explained by the fact that ~-prop- 

lem and the problem of the separation of sets upon which one Usually inves- 

tigates games with a saddle point are of analogous nature In terms of the 

formulation of the problem and in terms of the method of Investigation. 

6. We consider an example. Let It be required to stabilize the system 

dxf&=Ax+bu (6.~1 

by means of the control u = p-x, whereby the quantities r (t) = h-x (t) + w (t), 

/W(t) 14 (i. are to be measured. fn accordance with the procedure described 
in [lo], one may successively solve the problem on the stabilization of 
system (6.1) and then the problem on the observation of the quantity p-r(t) 
by means of y (1). Let the Equation 
cases, the roots h, with RaAk<O 

?JSj 1 = 0 have, In all 
whenever the vector p(z) 

changes within the limits 

P (4 = P”+Dz (- ej < i3.j Q Ejl” = {d*j}’ i = 1, f * -3 n; i = 1, * * *I k) (6.21 

Then in the process of the solution of the problem on the stabilization 
(6.1) there arises the problem [lOI on the observation 3.1 as follows: for 
a chosen 6 > 0 find 0 from (6.2) and an operation ‘p [r (T)] (0 < ‘5 < 6). which 
regenerates the quantityp(s).z(t)by means of r(t) and with the smallest 
error, where 

cp [r (t + z)] = cp 1% ft + $1 + cp [w @ 4 +I = P (4 1: (t + 81 +a UI 

dx/dt=Ax, y = h.r 

It was shown above that this problem reduces to the following problem: 
find and a function C'(T) for&which 

(6.3) 

0 (g*, ?I% are row vectors) 

The problem Is 
for which a(4 = 

solvable. if. and only if, there exists a t! from (6.2) 
min, max, 1 y(f) 1 > 0 for x (@) p (z) = 1. Let this condition be 

fulfilled. Then the impulse p-*(6') (6.3) of the optimum regenerating&Snal 
~“(7) is determined by Equation 

P*(50) =f, a = max, a (2) = max, Imint maxz I 2.g (4 tf f6.4) 

(0 <z g 6, I *p (2) = 1, - Ei 6 zi Q q, i = 1, - * 9, N 

If by the conditions of the problem the value Of the error A =S’%Plr, 
is not allowed to exceed the number Y, then the problem Is solvable if, and 
only if a>a/v. Changing the scale, if necessary, we rewrite the latter 
condition in the form of an inequality 

a>,$ (6.5) 
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N o t e 6.1. We assume that p (z) # 0 In (6.2)) then sups a (z) < 00 and 
the maximum (6.4) Is actually attained. 

Assuming that the matrix A Is nonsingular and that the condition of 

z;;;o;t Isolated points ~~(i = 1, . . ..s(1)). 

j=l 

and the unknown operation cp[r] has the form 
n 

9 [r ($1 = x Xj r(rj) 
j=l 

Thus to sol've problem 3.1 in the given case It Is necessary to solve 
problem (6.4). The quantity max, Ii.g(?)l= p(Y), considered as a function 
of Z and 1 under the conditions p(z)*1 = i and (6.2), has the saddle point 
(zO, P). 

This Is verified by arguments which are analogous to those that are used 
to prove the maximum theorem for extended finite games [g]. Therefore the 
solution (&', P)of the problem (6.4) satisfies condition 

and the Inequality (6.5) Is equivalent to the Inequality 

miq [(mar, 12-g (4 I) + $l q 1 tldjiij I] > 1 for l*P’=i 

In particular, if pi (z) = Pi" -I- ZiY then condition (6.6) has the form 

for 1 -p” = 1 

(6.6) 

In this case the problem considered 3.1. coincides with the problem on 
the control of the system& /dt = -%*x+ hli from the point x0 = 0, to = 0 
Into (c, 1, a vicinity of the point p , by means of the force u(t)whose lm- 
pulse a 

s 
I u (4 I dt 

0 

does not exceed unity. The condition of observability and controllability 
(6.7) can also be deduced In an other way, for exainple, by considering the 
problem (6.3) as an L-problem on the elements of the space 

with norm 
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